

ФОТОУМНОЖИТЕЛЬ КРЕМНИЕВЫЙ МАЛОГАБАРИТНЫЙ

(функциональный аналог – MPPC ф. Hamamatsu)

Кремниевые малогабаритные умножители КОФ5-1035, КОФ5-1035A работают в диапазоне длин волн, λ, от 380 мкм до 800 нм.

Функциональное назначение – регистрация излучения, в том числе низкой интенсивности

Основные характеристики:

- рабочее напряжение, U_{br}, B, не более 60 B;
- диапазон напряжения смещения (выше U_b) (1÷5) В;
- коэффициент усиления, G, не менее 1·10⁶;
- эффективность регистрации фотонов, PDE, не менее 30 %;
- диапазон рабочих температур среды от минус 10 до плюс 70 °C;
- повышенная предельная температура среды 100 °C.

Область применения:

- дозиметрия;
- квантовая криптография;
- спектроскопия;
- астрономические ЛИДАРы;
- малые космические аппараты;
- флуоресцентная микроскопия;
- определение размеров частиц;
- разработка лекарственных препаратов;
- анализ ДНК;
- регистрация молекул и др.

Таблица 1 – Электрические параметры фотоумножителя

таолица т – электрические параметры фотоумножителя						
Наименование	Буквенное	Норма		Режим	Темпе-	
параметра,	обозначе-	не	не	измерения	ратура	
единица измерения	ние	менее	более		среды, °С	
Напряжение лавинного	U _b	25	45	I _b = 0,1 мкА	25 ± 10	
пробоя, В	O _D	25	45	10 0,1 11110 1	-10; 70	
Максимальный темновой		-	1·10 ⁻⁸	11 = 0 011	25 ± 10	
ток, А	l _d	-	1·10 ⁻⁷	$U = 0.9U_b$	-10; 70	
Чувствительность к све- товому потоку, А/Вт	S	1·10 ⁵	-	$U = (U_b + 4) B$ $\lambda = \lambda_s$	25 ± 10	
Коэффициент усиления	G	1·10 ⁶	-	$U = (U_b + 4) B$	25 ± 10	
Диапазон спектральной фоточувствительности, мкм	λ_{min} - λ_{max}	0,38	0,80	U = (U _b +4) B	25 ± 10	
Максимум спектральной фоточувствительности, мкм	λ_{s}	0,45	0,55	U = (U _b + 4) B	25 ± 10	
Эффективность регистрации фотонов, %	PDE	30	-	$U = (U_b + 4) B$ $\lambda = \lambda_s$	25 ± 10	
Скорость темнового сче- та, кГц	DCR	-	1·10 ³	$U = (U_b + 3) B$	25 ± 10	

Таблица 2 – Предельно допустимые значения электрических режимов

Обозначение параметра	Наименование параметра	Норма	Единица измерения
U _{max}	Максимально допустимое напряжение	U _b +7	В
I _{dmax}	Максимально допустимый ток	1	мА

Таблица 3 – Справочные значения электрических параметров

Наименование параметра, единица измерения, режим измерения	Буквен- ное обо-	Норма параметра		
	значение парамет- ра	не менее	не более	
Емкость, пФ при U = U_b В	С	-	120	

Таблица 4 – Конструктивные параметры фотоумножителя

Размер фотоактивной области	1,1×1,1 мм ²		
Число пикселей	1004		
Размер пикселя	35×35 мкм		
Коэффициент заполнения (fill-factor)	61,6 %		

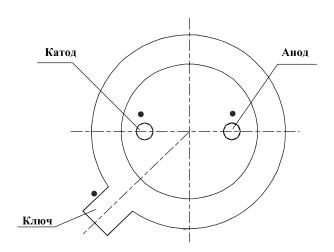


Рисунок 1 – Схема расположения выводов (вид снизу)

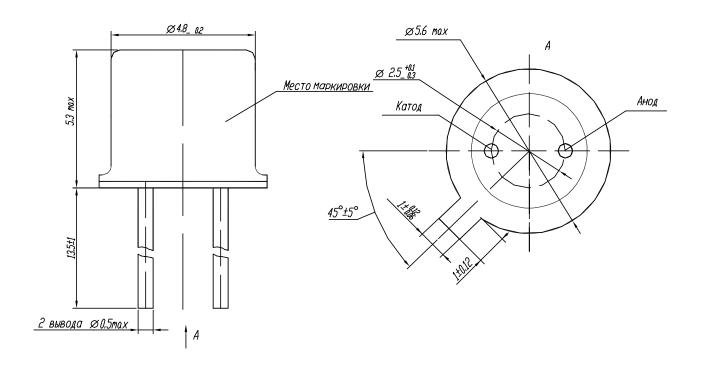


Рисунок 2 – Габаритные размеры корпуса КТ-1-2

Толщина и состав металла на планарной стороне	Ti	0,020±0,002 мкм
	AlCu	0,80±0,08 мкм
Толщина и состав металла на непланарной стороне	Ti	0,10±0,02 мкм
	Ni	0,5±0,1 мкм
	Ag	0,6±0,1 мкм

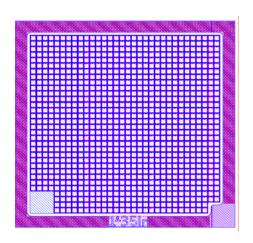


Рисунок 4 - Внешний вид кристалла

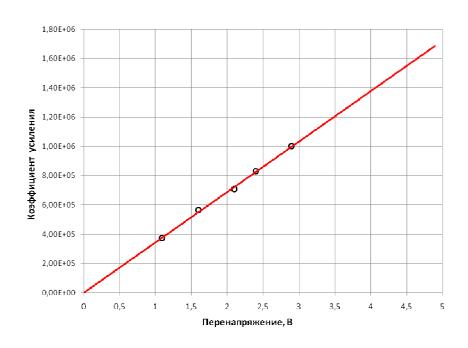


Рисунок 5 – Зависимость коэффициента усиления от перенапряжения

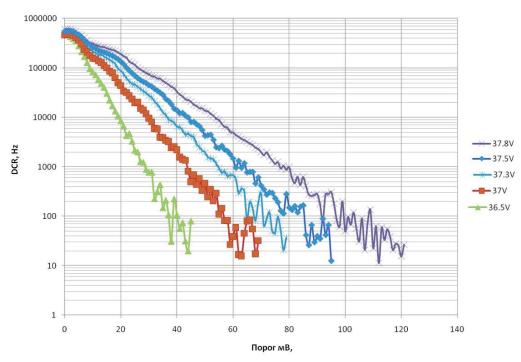


Рисунок 6 — Зависимость скорости темнового счета от порога считывания при температуре среды (25 \pm 10) $^{\circ}$ C

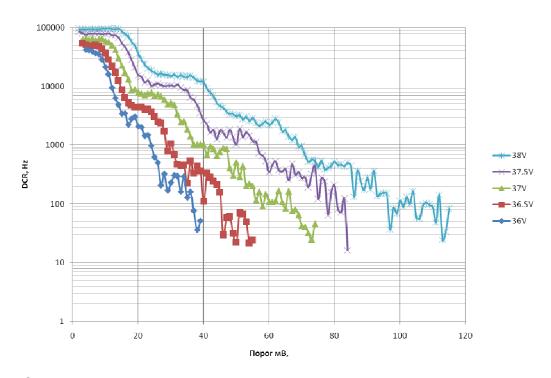


Рисунок 7 – Зависимость скорости темнового счета от порога считывания при температуре среды минус 20 °C

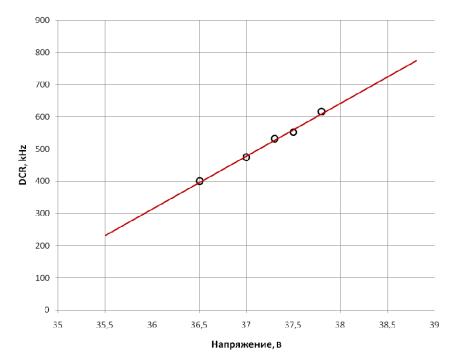


Рисунок 8 – Зависимость скорости темнового счета от напряжения при температуре среды $(25\pm10)\,^{\circ}\text{C}$

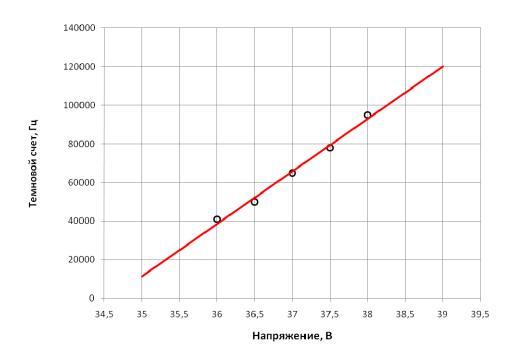


Рисунок 9 – Зависимость скорости темнового счета от напряжения при температуре среды минус 20 °C

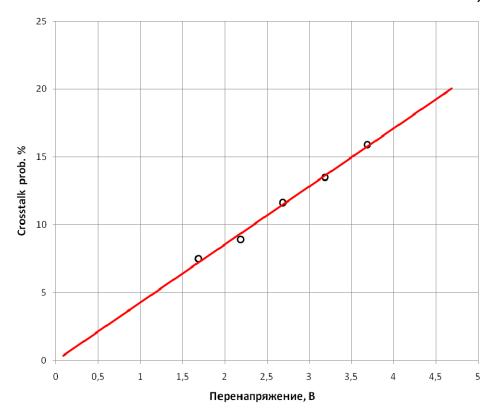


Рисунок 10 - Перекрестная помеха от перенапряжения при температуре среды минус 20 °C

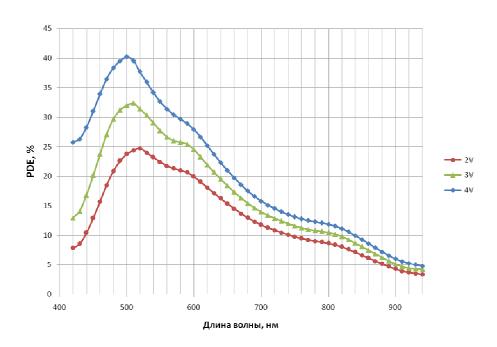


Рисунок 11 - Зависимость эффективности регистрации фотонов от длины волны при перенапряжении 2 В, 3 В и 4 В

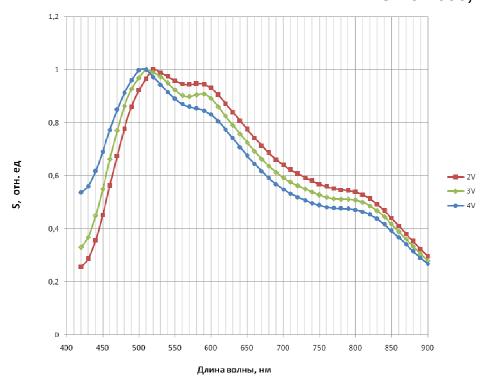


Рисунок 12 - Зависимость относительной спектральной чувствительности от длины волны при перенапряжении 2 B, 3 B и 4 B

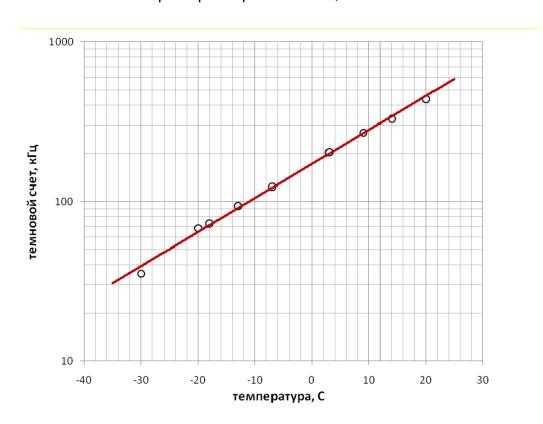


Рисунок 13 - Зависимость скорости темнового счета от температуры среды при напряжении 37 B

